
Lesson 2: Simulation of Stochastic Dynamic Models

Aaron A. King Edward L. Ionides Translated in pypomp by Kunyang He

2025-05-28

Table of contents
Compartment models 2

Example: the SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A basic compartment model: The SIR model . . . . . . . . . . . . . . . . . . . . . . 2

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
General notation for compartment models . . . . . . . . . . . . . . . . . . . . . . . . 3
Compartment processes from counting processes . . . . . . . . . . . . . . . . . . . . 3

A deterministic interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ordinary differential equation interpretation . . . . . . . . . . . . . . . . . . . . . . . 3

A stochastic interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Continuous‑time Markov chain interpretation . . . . . . . . . . . . . . . . . . . . . . 4
Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Simple counting processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Euler’s method 5
Numerical solution of deterministic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 5

Euler’s method for ordinary differential equations . . . . . . . . . . . . . . . . . . . . 5
Euler’s method versus other numerical methods . . . . . . . . . . . . . . . . . . . . . 5
Continuous‑time models and discretized approximations . . . . . . . . . . . . . . . . 5
Numerical solutions as scientific models . . . . . . . . . . . . . . . . . . . . . . . . . 6
Euler’s method for a discrete SIR model . . . . . . . . . . . . . . . . . . . . . . . . . 6

Numerical solution of stochastic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Three different stochastic Euler solutions . . . . . . . . . . . . . . . . . . . . . . . . 7
Compartment models as stochastic differential equations . . . . . . . . . . . . . . . . 7
Exercise · Euler’s method vs Gillespie’s algorithm . . . . . . . . . . . . . . . . . . . 8

Compartment models in pomp 8
A basic pomp model for measles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The Consett measles outbreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A simple POMP model for measles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Framing the SIR as a POMP model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Implementing the SIR model in pomp . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Choosing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Guessing plausible parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

This tutorial develops some classes of dynamic models relevant to biological systems, especially for
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epidemiology.

1. Dynamic systems can often be represented in terms of flows between compartments.
2. We develop the concept of a compartmental model for which we specify rates for the flows

between compartments.
3. We show how deterministic and stochastic versions of a compartmental model are derived

and related.
4. We introduce Euler’s method to simulate from dynamic models.
5. We specify deterministic and stochastic compartmental models in pomp using Euler‐method

simulation.

Compartment models
Example: the SIR model
A basic compartment model: The SIR model

• We develop deterministic and stochastic representations of a susceptible‑infected‑recovered (SIR)
system, a fundamental class of models for disease transmission dynamics.

• We set up notation applicable to general compartment models (Bretó et al., 2009).
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S : susceptible I : infected and infectious
R : recovered and/or removed C : reported cases

• We suppose that each arrow has an associated rate, so here there is a rate 𝜇𝑆𝐼(𝑡) at which
individuals in 𝑆 transition to 𝐼 , and 𝜇𝐼𝑅 at which individuals in 𝐼 transition to 𝑅.

• To account for demography (births/deaths/migration) we allow the possibility of a source
and sink compartment, which is not usually represented on the flow diagram. We write 𝜇𝐵𝑆
for a rate of births into 𝑆, and denote mortality rates by 𝜇𝑆𝐷, 𝜇𝐼𝐷, 𝜇𝑅𝐷.

• The rates may be either constant or varying. In particular, for a simple SIR model, the
recovery rate 𝜇𝐼𝑅 is a constant but the infection rate has the time-varying form

𝜇𝑆𝐼(𝑡) = 𝛽 𝐼(𝑡),

with 𝛽 being the transmission rate. For the simplest SIR model, ignoring demography, we set

𝜇𝐵𝑆 = 𝜇𝑆𝐷 = 𝜇𝐼𝐷 = 𝜇𝑅𝐷 = 0.
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Notation
General notation for compartment models

To develop a systematic notation, it is convenient to keep track of the flows between compartments
as well as the number of individuals in each compartment. Let

𝑁𝑆𝐼(𝑡)

count the number of individuals who have transitioned from 𝑆 to 𝐼 by time 𝑡. We say that 𝑁𝑆𝐼(𝑡)
is a counting process. A similarly constructed process

𝑁𝐼𝑅(𝑡)

counts individuals transitioning from 𝐼 to 𝑅.
To include demography, we could keep track of birth and death events with the counting processes
𝑁𝐵𝑆(𝑡), 𝑁𝑆𝐷(𝑡), 𝑁𝐼𝐷(𝑡) and 𝑁𝑅𝐷(𝑡).

• For discrete‑population compartment models, the flow counting processes are
non‑decreasing and integer‑valued.

• For continuous‑population compartment models, the flow counting processes are
non‑decreasing and real‑valued.

Compartment processes from counting processes

• The numbers of people in each compartment can be computed via these counting processes.
Ignoring demography, we have:

𝑆(𝑡) = 𝑆(0) − 𝑁𝑆𝐼(𝑡)
𝐼(𝑡) = 𝐼(0) + 𝑁𝑆𝐼(𝑡) − 𝑁𝐼𝑅(𝑡)
𝑅(𝑡) = 𝑅(0) + 𝑁𝐼𝑅(𝑡)

• These equations represent conservation of individuals—what goes in must come out.

A deterministic interpretation
Ordinary differential equation interpretation

Together with initial conditions specifying 𝑆(0), 𝐼(0) and 𝑅(0), we just need to write down ordinary
differential equations (ODEs) for the flow counting processes. These are:

𝑑𝑁𝑆𝐼
𝑑𝑡 = 𝜇𝑆𝐼(𝑡) 𝑆(𝑡)

𝑑𝑁𝐼𝑅
𝑑𝑡 = 𝜇𝐼𝑅 𝐼(𝑡)
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A stochastic interpretation
Continuous‑time Markov chain interpretation

• Continuous‑time Markov chains are the basic tool for building discrete population epi-
demic models.

• The Markov property lets us specify a model by the transition probabilities on small intervals
(together with the initial conditions). For the SIR model, we have

Pr [𝑁𝑆𝐼(𝑡 + 𝛿) = 𝑁𝑆𝐼(𝑡) + 1] = 𝜇𝑆𝐼(𝑡) 𝑆(𝑡) 𝛿 + 𝑜(𝛿)
Pr [𝑁𝑆𝐼(𝑡 + 𝛿) = 𝑁𝑆𝐼(𝑡)] = 1 − 𝜇𝑆𝐼(𝑡) 𝑆(𝑡) 𝛿 + 𝑜(𝛿)
Pr [𝑁𝐼𝑅(𝑡 + 𝛿) = 𝑁𝐼𝑅(𝑡) + 1] = 𝜇𝐼𝑅 𝐼(𝑡) 𝛿 + 𝑜(𝛿)
Pr [𝑁𝐼𝑅(𝑡 + 𝛿) = 𝑁𝐼𝑅(𝑡)] = 1 − 𝜇𝐼𝑅(𝑡) 𝐼(𝑡) 𝛿 + 𝑜(𝛿)

• Here, we are using little‑o notation.
We write ℎ(𝛿) = 𝑜(𝛿) to mean lim

𝛿→0
ℎ(𝛿)

𝛿 = 0.

Exercise

What is the link between little 𝑜 notation and the derivative?
Explain why

𝑓(𝑥 + 𝛿) = 𝑓(𝑥) + 𝛿 𝑔(𝑥) + 𝑜(𝛿)

is the same statement as

𝑑𝑓
𝑑𝑥 = 𝑔(𝑥).

What considerations might help you choose which of these notations to use?

Simple counting processes

• A simple counting process is one which cannot count more than one event at a time.

• Technically, the SIR Markov‑chain model we have written is simple.

• One may want to model the extra randomness resulting from multiple simultaneous events:
someone sneezing in a bus; large gatherings at football matches; etc. This extra randomness
may even be critical to match the variability in data.

• Later in the course, we may see situations where this extra randomness plays an important
role. Setting up the model using counting processes, as we have done here, turns out to be
useful for this.

4



Euler’s method
Numerical solution of deterministic dynamics
Euler’s method for ordinary differential equations

• Euler (1707 – 1783) wanted a numeric solution of an ordinary differential equation (ODE)
𝑑𝑥/𝑑𝑡 = ℎ(𝑥) with an initial condition 𝑥(0).

• He supposed this ODE has some true solution 𝑥(𝑡) which could not be worked out analytically.
He wanted an approximation ̃𝑥(𝑡) of 𝑥(𝑡).

• He initialized the numerical solution at the known starting value,

̃𝑥(0) = 𝑥(0).

• For 𝑘 = 1, 2, …, he supposed that the gradient 𝑑𝑥/𝑑𝑡 is approximately constant over the
small time interval 𝑘𝛿 ≤ 𝑡 ≤ (𝑘 + 1)𝛿. Therefore, he defined

̃𝑥((𝑘 + 1)𝛿) = ̃𝑥(𝑘𝛿) + 𝛿 ℎ( ̃𝑥(𝑘𝛿)).
• This only defines ̃𝑥(𝑡) when 𝑡 is a multiple of 𝛿, but suppose ̃𝑥(𝑡) is constant between these

discrete times.

• We now have a numerical scheme, stepping forwards in time increments of size 𝛿, that can be
readily evaluated by computer.

Euler’s method versus other numerical methods

• Mathematical analysis of Euler’s method says that, as long as the function ℎ(𝑥) is not
too exotic, then 𝑥(𝑡) is well approximated by ̃𝑥(𝑡) when the discretization time‑step 𝛿 is
sufficiently small.

• Euler’s method is not the only numerical scheme to solve ODEs. More advanced schemes
have better convergence properties, meaning that the numerical approximation is closer to
𝑥(𝑡). However, there are three reasons we choose to lean heavily on Euler’s method:

1. Euler’s method is the simplest (cf. the KISS principle).

2. Euler’s method extends naturally to stochastic models, both continuous‑time
Markov‑chain models and stochastic differential equation (SDE) models.

3. Close approximation of the numerical solutions to a continuous‑time model is less im-
portant than it may at first appear—a topic to be discussed.

Continuous‑time models and discretized approximations

• In some physical and engineering situations, a system follows an ODE model closely. For
example, Newton’s laws provide a very good approximation to the motions of celestial bodies.

• In many biological situations, ODE models only become close mathematical approximations
to reality at reasonably large scale. On small temporal scales, models cannot usually capture
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the full scope of biological variation and complexity.

• If we are going to expect substantial error in using 𝑥(𝑡) to model a biological system, maybe
the numerical solution ̃𝑥(𝑡) represents the system being modeled just as well as 𝑥(𝑡) does.

• If our model fitting, model investigation, and final conclusions are all based on our numerical
solution ̃𝑥(𝑡) (i.e. we are sticking entirely to simulation‑based methods) then we are most
immediately concerned with how well ̃𝑥(𝑡) describes the system of interest. In that sense,

̃𝑥(𝑡) becomes more important than the original model 𝑥(𝑡).

Numerical solutions as scientific models

• It is important that a scientist fully describe the numerical model ̃𝑥(𝑡). Arguably, the main
purpose of the original model 𝑥(𝑡) is to give a succinct description of how ̃𝑥(𝑡) was constructed.

• All numerical methods are, ultimately, discretizations. Epidemi‑ ologically, setting 𝛿 to be
a day or an hour can be quite different from setting 𝛿 to be two weeks or a month. For
continuous‑time modeling, we still require that 𝛿 is small compared to the timescale of the
process being modeled, so the choice of 𝛿 should not play an explicit role in the interpretation
of the model.

• Putting more emphasis on the scientific role of the numerical solution itself reminds you that
the numerical solution has to do more than approximate a target model in some asymptotic
sense: the numerical solution should be a sensible model in its own right.

Euler’s method for a discrete SIR model

• Recall the simple continuous‑time Markov‑chain interpretation of the SIR model without
demography:

Pr[𝑁𝑆𝐼(𝑡 + 𝛿) = 𝑁𝑆𝐼(𝑡) + 1] = 𝜇𝑆𝐼(𝑡) 𝑆(𝑡) 𝛿 + 𝑜(𝛿),
Pr[𝑁𝐼𝑅(𝑡 + 𝛿) = 𝑁𝐼𝑅(𝑡) + 1] = 𝜇𝐼𝑅 𝐼(𝑡) 𝛿 + 𝑜(𝛿).

• We want a numerical solution with state variables ̃𝑆(𝑘𝛿), ̃𝐼(𝑘𝛿), �̃�(𝑘𝛿).

• The counting processes for the flows between compartments are ̃𝑁𝑆𝐼(𝑡) and ̃𝑁𝐼𝑅(𝑡). They
relate to the numbers of individuals in the compartments via

̃𝑆(𝑘𝛿) = 𝑆(0) − ̃𝑁𝑆𝐼(𝑘𝛿),
̃𝐼(𝑘𝛿) = 𝐼(0) + ̃𝑁𝑆𝐼(𝑘𝛿) − ̃𝑁𝐼𝑅(𝑘𝛿),

�̃�(𝑘𝛿) = 𝑅(0) + ̃𝑁𝐼𝑅(𝑘𝛿).

• We focus on a numerical solution to 𝑁𝑆𝐼(𝑡), since the same methods can be applied to 𝑁𝐼𝑅(𝑡).
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Numerical solution of stochastic dynamics
Three different stochastic Euler solutions

1. Poisson approximation

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + Poisson[𝜇𝑆𝐼( ̃𝐼(𝑡)) ̃𝑆(𝑡) 𝛿],

where Poisson(𝜇) is a Poisson random variable with mean 𝜇 and

𝜇𝑆𝐼( ̃𝐼(𝑡)) = 𝛽 ̃𝐼(𝑡).

2. Binomial approximation

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + Binomial[ ̃𝑆(𝑡), 𝜇𝑆𝐼( ̃𝐼(𝑡)) 𝛿],

where Binomial(𝑛, 𝑝) has mean 𝑛𝑝 and variance 𝑛𝑝(1 − 𝑝), with 𝑝 = 𝜇𝑆𝐼( ̃𝐼(𝑡)) 𝛿.

3. Binomial approximation with exponential transition probability

̃𝑁𝑆𝐼(𝑡 + 𝛿) = ̃𝑁𝑆𝐼(𝑡) + Binomial[ ̃𝑆(𝑡), 1 − exp{−𝜇𝑆𝐼( ̃𝐼(𝑡)) 𝛿}].

Analytically, it is usually easiest to reason using (1) or (2).
Practically, it is often preferable to work with (3).

Compartment models as stochastic differential equations

• The Euler method extends naturally to stochastic differential equations (SDEs).

• A natural way to add stochastic variation to an ODE 𝑑𝑥/𝑑𝑡 = ℎ(𝑥) is

𝑑𝑋
𝑑𝑡 = ℎ(𝑋) + 𝜎 𝑑𝐵

𝑑𝑡 ,

where {𝐵(𝑡)} is Brownian motion, so 𝑑𝐵/𝑑𝑡 is Brownian noise.

• An Euler approximation �̃�(𝑡) is

�̃�((𝑘 + 1)𝛿) = �̃�(𝑘𝛿) + 𝛿 ℎ(�̃�(𝑘𝛿)) + 𝜎
√

𝛿 𝑍𝑘,

where 𝑍1, 𝑍2, … are independent standard normal variables (𝑍𝑘 ∼ 𝒩(0, 1)).
• Although SDEs are often considered advanced, the Euler approximation itself requires little

more than familiarity with the normal distribution.
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Exercise · Euler’s method vs Gillespie’s algorithm

A widely used exact simulation method for continuous‑time Markov chains is Gillespie’s algorithm.
We do not emphasise it here. Why? When would you prefer an implementation of Gillespie’s
algorithm over an Euler solution?

Numerically, Gillespie’s algorithm is often approximated using tau‑leaping methods, which are
closely related to Euler’s approach; in this context Euler’s method is sometimes called tau‑leaping.

Compartment models in pomp

A basic pomp model for measles
The Consett measles outbreak

As an example that we can probe in some depth, let’s look at an outbreak of measles that occurred
in the small town of Consett in England in 1948. The town had a population of 38 820, with 737
births over the course of the year.

We download the data and examine them:
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Consett measles outbreak (1948)

Figure 1: Consett measles outbreak (1948)

meas = (pd.read_csv(
"https://kingaa.github.io/sbied/stochsim/Measles_Consett_1948.csv")
.loc[:, ["week", "cases"]]
.rename(columns={"week": "time", "cases": "reports"})
.set_index("time")
.astype(float))

ys = meas.copy()
ys.columns = pd.Index(["reports"])

fig, ax = plt.subplots(figsize=(3.5, 2.5))
ax.plot(ys.index, ys["reports"], lw=1)
ax.set(xlabel="Week of 1948",

ylabel="Reported measles cases",
title="Consett measles outbreak (1948)")

ax.grid(alpha=0.20)
fig.tight_layout()
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A simple POMP model for measles

• These are incidence data: the reports variable counts the number of new measles cases each
week.

• We will model the outbreak using the simple SIR model.

• Tasks: (i) estimate the parameters of the SIR; (ii) decide whether SIR adequately describes
these data.

• The rate at which individuals move from S to I is the force of infection 𝜇𝑆𝐼 = 𝛽 𝐼/𝑁 , while
that at which individuals leave I for R is 𝜇𝐼𝑅.

Framing the SIR as a POMP model

• Latent state variables: numbers of individuals 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) in the S, I, R compartments.

• Treat population size 𝑁 = 𝑆 + 𝐼 + 𝑅 as fixed at the known value 38 000.

• The actual numbers moving between compartments over any interval are modeled as
stochastic processes.

• We assume the stochasticity is purely demographic: every individual in a compartment
faces the same exit risk at any time.

• Demographic stochasticity is the unavoidable randomness arising from chance events in a
discrete, finite population.

Implementing the SIR model in pomp

• To implement the model in pomp, we first need a stochastic simulator for the latent process.

• Following method 3 (binomial with exponential transition), the number moving S → I over Δ𝑡
is

Δ𝑁𝑆𝐼 ∼ Binomial(𝑆, 1 − 𝑒−𝛽 𝐼
𝑁 Δ𝑡),

and the number moving I → R is

Δ𝑁𝐼𝑅 ∼ Binomial(𝐼, 1 − 𝑒−𝜇𝐼𝑅 Δ𝑡).

@partial(pp.RInit, t0=0.0)
def rinit(theta_, key, covars=None, t0=None):

Beta, mu_IR, N, eta, rho, k = unpack_params(theta_)
S0 = jnp.round(N * eta)
I0 = 1.0
R0 = jnp.round(N * (1 - eta)) - 1.0
H0 = 0.0
return jnp.array([S0, I0, R0, H0])
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• Now assume the case reports result from a process by which new infections are diagnosed and
reported with probability 𝜌, which we can think of as the probability that a child’s parents
take the child to the doctor, who recognises measles and reports it to the authorities.

• Measles symptoms tend to be quite recognisable, and children with measles tend to be con-
fined to bed. Therefore diagnosed cases have, presumably, a much lower transmission rate.
Accordingly, let’s treat each week’s reports as being related to the number of individuals
who have moved from 𝐼 to 𝑅 over the course of that week.

• We need a variable to track these daily counts. We modify our rprocess function above,
adding a variable 𝐻 to tally the true incidence.

@partial(pp.RProc, step_type="fixedstep", nstep=7, accumvars=(3,))
def rproc(X_, theta_, key, covars=None, t=None, dt=None):

Beta, mu_IR, N, eta, rho, k = unpack_params(theta_)
S, I, R, H = X_

p_SI = 1.0 - jnp.exp(-Beta * I / N * dt)
p_IR = 1.0 - jnp.exp(-mu_IR * dt)

key_SI, key_IR = jax.random.split(key)
dN_SI = jax.random.binomial(key_SI, n=jnp.round(S).astype(jnp.int32), p=p_SI)
dN_IR = jax.random.binomial(key_IR, n=jnp.round(I).astype(jnp.int32), p=p_IR)

S_new = S - dN_SI
I_new = I + dN_SI - dN_IR
R_new = R + dN_IR
H_new = H + dN_IR

return jnp.array([S_new, I_new, R_new, H_new])

• Now, we’ll model the data by a negative‑binomial variable

reports𝑡 ∼ NegBin(𝜌 𝐻(𝑡), 𝑘),

with mean 𝜌 𝐻(𝑡) and variance 𝜌 𝐻(𝑡)+(𝜌 𝐻(𝑡))2/𝑘. The binomial distribution does not have
a separate variance parameter.

• Now, to include the observations in the model, we must write either a dmeasure or an
rmeasure component, or both.

def nbinom_logpmf(x, k, mu):
"""Log PMF of NB(k, mu) that is robust when mu == 0."""
x = jnp.asarray(x)
k = jnp.asarray(k)
mu = jnp.asarray(mu)
# handle mu == 0 separately
logp_zero = jnp.where(x == 0, 0.0, -jnp.inf)
safe_mu = jnp.where(mu == 0.0, 1.0, mu) # dummy value, ignored
core = (jax.scipy.special.gammaln(k + x) - jax.scipy.special.gammaln(k)

- jax.scipy.special.gammaln(x + 1)
+ k * jnp.log(k / (k + safe_mu))
+ x * jnp.log(safe_mu / (k + safe_mu)))

return jnp.where(mu == 0.0, logp_zero, core)

def rnbinom(key, k, mu):
key_g, key_p = jax.random.split(key)
lam = jax.random.gamma(key_g, k) * (mu / k)
return jax.random.poisson(key_p, lam)

10



@pp.DMeas
def dmeas(Y_, X_, theta_, covars=None, t=None):

Beta, mu_IR, N, eta, rho, k = unpack_params(theta_)
H = X_[3]
mu = rho * H
return nbinom_logpmf(Y_[0], k, mu)

@partial(pp.RMeas, ydim=1)
def rmeas(X_, theta_, key, covars=None, t=None):

Beta, mu_IR, N, eta, rho, k = unpack_params(theta_)
H = X_[3]
mu = rho * H
reports = rnbinom(key, k, mu)
return jnp.array([reports])

• A call to pomp replaces the basic model components with these, much faster, implementations:
def unpack_params(theta_vec):

Beta = theta_vec[0]
mu_IR = theta_vec[1]
N = theta_vec[2]
eta = theta_vec[3]
rho = theta_vec[4]
k = theta_vec[5]
return Beta, mu_IR, N, eta, rho, k

def pack_params(Beta, mu_IR, N, eta, rho, k):
return jnp.array([Beta, mu_IR, N, eta, rho, k])

theta_guess = {"Beta": 7.5, "mu_IR": 0.5, "N": 38000,
"eta": 0.03, "rho": 0.5, "k": 10.0}
param_bounds = {k: (v * 0.9, v * 1.1) for k, v in theta_guess.items()}
key = jax.random.key(2)
key, subkey = jax.random.split(key)
theta_list = pp.Pomp.sample_params(param_bounds, n=5, key=subkey)

sir_obj = pp.Pomp(
rinit=rinit,rproc=rproc,dmeas=dmeas,
rmeas=rmeas,ys=ys,theta=theta_list,
covars=None,)

Choosing parameters
Guessing plausible parameter values

• To check that the code is working properly, we will simulate the model. This requires
plausible parameter values, which we can obtain with a few back‑of‑the‑envelope estimates.

• Recall that ℛ0 is the expected number of secondary infections caused by one primary infection
introduced into a fully susceptible population.
For an SIR infection we have ℛ0 ≈ 𝐿

𝐴 , where 𝐿 is host lifespan and 𝐴 is mean age of infection.
Age‑stratified serology indicates 𝐴 ≈ 4–5 yr (Anderson and May, 1991). Assuming 𝐿 ≈ 60–
70 yr gives ℛ0 ≈ 15.

• The final‑size equation for an SIR epidemic is

ℛ0 = − log(1 − 𝑓)
𝑓 ,

where 𝑓 is the fraction of initial susceptibles who ultimately become infected. For ℛ0 > 5,
this implies 𝑓 > 0.99.
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• The data contain 521 reported infections. Assuming a 50 % reporting rate, we have 𝑆0 ≈ 1042,
so that 𝜂 = 𝑆0

𝑁 ≈ 0.027.

• If the infectious period is roughly 2 weeks, then 1/𝜇𝐼𝑅 ≈ 2 wk and 𝛽 = 𝜇𝐼𝑅 ℛ0 ≈ 7.5 wk−1.

• Let’s now simulate the model with these parameter values.
n_sims = 20
keys = jax.random.split(key, n_sims + 1)
sim_keys = keys[1:]

simulated_reports = []
for k in sim_keys:

sim_out = sir_obj.simulate(key=k)
rep = np.asarray(sim_out[0]["Y_sims"])[:, 0, 0]
simulated_reports.append(rep)

sim_df = pd.DataFrame(
np.column_stack(simulated_reports),
index=ys.index,
columns=[f"sim_{i+1}" for i in range(n_sims)]

)

fig, ax = plt.subplots(figsize=(3.5, 2.5))
ys["reports"].plot(ax=ax, lw=0.8, color="black", label="observed")
sim_df.plot(ax=ax, lw=0.8, alpha=0.6, legend=False)
ax.set(

xlabel="Week of 1948",
ylabel="Reported measles cases",
title="SIR model – 20 stochastic simulations vs data",

)
ax.grid(alpha=0.15)
plt.tight_layout()
plt.show()
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Figure 2: SIR simulation vs. 1948 Consett measles data
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