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Introduction Objectives for this lesson

Objectives for this lesson

To understand the motivations for simulation‑based inference in the
study of epidemiological and ecological systems.
To introduce the class of partially observed Markov process (POMP)
models.
To introduce the pomp R package.
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Introduction What is pypomp

What is pypomp

pypomp is an independent Python framework for building, simulating
and fitting partially observed Markov process (POMP) models.

Written in modern Python � 3.10 and built on JAX for just‑in‑time
compilation, automatic differentiation (AD) and transparent
CPU/GPU/TPU execution.

Aims to serve two user groups:
Scientists who need fast, plug‑and‑play likelihood‑based inference for
nonlinear dynamical systems.

Method developers who want a clean, differentiable platform for
experimenting with new particle‐filter and Bayesian algorithms.
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Introduction What makes epidemiological inference hard?

Epidemiological and Ecological Dynamics

Ecological systems are complex, open, nonlinear, and
non‑stationary.
“Laws of Nature” are unavailable except in the most general form.
It is useful to model them as stochastic systems.
For any observable phenomenon, multiple competing explanations
are possible.
Central scientific goals

Which explanations are most favored by the data?
Which kinds of data are most informative?

Central applied goals
How to design ecological or epidemiological intervention?
How to make accurate forecasts?

Time series are particularly useful sources of data.
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Introduction Why pypomp

Why pypomp

Automatic differentiation: gradients of log‑likelihoods, summary
statistics and even full particle‑filter traces are available
out‑of‑the‑box—no hand‑coded adjoints.

Hardware acceleration: a single GPU can advance tens of
thousands of particles in parallel, giving up‑to‑16× speed‑ups over
CPU‑bound workflows.

Functional, stateless design: all simulators take explicit JAX
random keys, making large‐scale parallelisation and reproducibility
straightforward.
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Introduction Why pypomp

Obstacles to inference

Obstacles for ecological modeling and inference via nonlinear mechanistic
models enumerated by (Bjørnstad and Grenfell, 2001):

1 Combining measurement noise and process noise.
2 Including covariates in mechanistically plausible ways.
3 Using continuous‑time models.
4 Modeling and estimating interactions in coupled systems.
5 Dealing with unobserved variables.
6 Modeling spatial‑temporal dynamics.

The same issues arise for epidemiological modeling and inference via
nonlinear mechanistic models.

The partially observed Markov process (POMP) modeling framework we
focus on in this course addresses most of these problems effectively.
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Introduction Course overview

Course objectives

1 To show how stochastic dynamical systems models can be used as
scientific instruments.

2 To teach statistically and computationally efficient approaches for
performing scientific inference using POMP models.

3 To give students the ability to formulate models of their own.
4 To give students opportunities to work with such inference methods.
5 To familiarize students with the pomp package.
6 To provide documented examples for adaptation and re‑use.
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Introduction Course overview

Questions and answers I

1 How does one combine various data types to quantify asymptomatic
COVID‑19 infections? (Subramanian et al., 2021)

2 How effective have various non‑pharmaceutical interventions been at
controlling SARS‑CoV‑2 spread in hospitals? (Shirreff et al., 2022)

3 How does one use incidence and mobility data to infer key
epidemiological parameters? (Andrade and Duggan, 2022)

4 How does one make forecasts for an outbreak of an emerging
infectious disease? (King et al., 2015)

5 How does one build a system for real‑time surveillance of COVID‑19
using epidemiological and mobility data? (Fox et al., 2022)

6 What strategies are effective at containing mumps spread on college
campuses? (Shah et al., 2022)

7 What explains the resurgence of pertussis in countries with sustained
high vaccine coverage? (Domenech de Cellès et al., 2018)
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Introduction Course overview

Questions and answers II
8 Do subclinical infections of pertussis play an important

epidemiological role? (Lavine et al., 2013)
9 Can serotype‑specific immunity explain the strain dynamics of human

enteroviruses? (Pons-Salort and Grassly, 2018)
10 How does dynamic variation in individual sexual behavior contribute

to the HIV epidemic? How does this compare to the role of
heterogeneity between individuals? (Romero-Severson et al., 2015)

11 What is the contribution of adults to polio transmission? (Blake et al.,
2014)

12 What explains the interannual variability of malaria? (Laneri et al.,
2010)

13 Can hydrology explain the seasonality of cholera? (Baracchini et al.,
2017)

14 What roles are played by asymptomatic infection and waning
immunity in cholera epidemics? (King et al., 2008)
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Partially observed Markov processes Mathematical definitions

Partially observed Markov process (POMP) models I

Data 𝑦∗
1, … , 𝑦∗

𝑁 collected at times 𝑡1 < ⋯ < 𝑡𝑁 are modeled as noisy,
incomplete, and indirect observations of a Markov process
{𝑋(𝑡), 𝑡 ≥ 𝑡0}.
This is a partially observed Markov process (POMP) model, also
known as a hidden Markov model or a state space model.
{𝑋(𝑡)} is Markov if the history of the process, {𝑋(𝑠), 𝑠 ≤ 𝑡}, is
uninformative about the future of the process, {𝑋(𝑠), 𝑠 ≥ 𝑡}, given
the current value of the process, 𝑋(𝑡).
If all quantities important for the dynamics of the system are placed
in the state, 𝑋(𝑡), then the Markov property holds by construction.

King & Ionides et al. Lesson 1 2025-07-23 11 / 30



Partially observed Markov processes Mathematical definitions

Partially observed Markov process (POMP) models II

Systems with delays can usually be rewritten as Markovian systems,
at least approximately.
An important special case: any system of differential equations
𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) is Markovian.
POMP models can include all the features desired by Bjørnstad and
Grenfell (2001).
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Partially observed Markov processes Mathematical definitions

Schematic of the structure of a POMP
Arrows in the following diagram show causal relations.
A key perspective to keep in mind is that the model is to be viewed as
the process that generated the data.
That is: the data are viewed as one realization of the model’s
stochastic process.

Figure 1: Schematic of the structure of a POMP
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Partially observed Markov processes Mathematical definitions

Notation for POMP models

Write 𝑋𝑛 = 𝑋(𝑡𝑛) and 𝑋0∶𝑁 = (𝑋0, … , 𝑋𝑁). Let 𝑌𝑛 be a random
variable modeling the observation at time 𝑡𝑛.
The one-step transition density, 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑥𝑛−1; 𝜃), together with
the measurement density, 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃) and the initial density,
𝑓𝑋0

(𝑥0; 𝜃), specify the entire POMP model.
The joint density 𝑓𝑋0∶𝑁,𝑌1∶𝑁

(𝑥0∶𝑁 , 𝑦1∶𝑁 ; 𝜃) can be written as

𝑓𝑋0
(𝑥0; 𝜃)

𝑁
∏
𝑛=1

𝑓𝑋𝑛∣𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃) 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛; 𝜃)

The marginal density for 𝑌1∶𝑁 evaluated at the data, 𝑦∗
1∶𝑁 , is

𝑓𝑌1∶𝑁
(𝑦∗

1∶𝑁 ; 𝜃) = ∫ 𝑓𝑋0∶𝑁,𝑌1∶𝑁
(𝑥0∶𝑁 , 𝑦∗

1∶𝑁 ; 𝜃) 𝑑𝑥0∶𝑁
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Partially observed Markov processes Mathematical definitions

Another POMP model schematic

𝑋0 𝑋1 ⋯ 𝑋𝑛−1 𝑋𝑛 𝑋𝑛+1

𝑌1 𝑌𝑛−1 𝑌𝑛 𝑌𝑛+1

States

Observations

𝑡0 𝑡1
⋯ 𝑡𝑛−1 𝑡𝑛 𝑡𝑛+1

Process model

Measurement model

The state process, 𝑋𝑛, is Markovian, i.e.,

𝑓𝑋𝑛|𝑋0∶𝑛−1,𝑌1∶𝑛−1
(𝑥𝑛|𝑥0∶𝑛−1, 𝑦1∶𝑛−1) = 𝑓𝑋𝑛|𝑋𝑛−1

(𝑥𝑛|𝑥𝑛−1).

Moreover, 𝑌𝑛, depends only on the state at that time:

𝑓𝑌𝑛|𝑋0∶𝑁,𝑌1∶𝑛−1
(𝑦𝑛|𝑥0∶𝑛, 𝑦1∶𝑛−1) = 𝑓𝑌𝑛|𝑋𝑛

(𝑦𝑛|𝑥𝑛), for 𝑛 = 1, … , 𝑁.
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Partially observed Markov processes From math to algorithms

Moving from math to algorithms for POMP models

We specify some basic model components which can be used within
algorithms:

rprocess: a draw from 𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃)

dprocess: evaluation of 𝑓𝑋𝑛|𝑋𝑛−1
(𝑥𝑛|𝑥𝑛−1; 𝜃)

rmeasure: a draw from 𝑓𝑌𝑛|𝑋𝑛
(𝑦𝑛|𝑥𝑛; 𝜃)

dmeasure: evaluation of 𝑓𝑌𝑛|𝑋𝑛
(𝑦𝑛|𝑥𝑛; 𝜃)

rinit: a draw from 𝑓𝑋0
(𝑥0; 𝜃)

These basic model components define the specific POMP model under
consideration.
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Partially observed Markov processes From math to algorithms

What is a simulation-based method?

Simulating random processes is often much easier than evaluating
their transition probabilities.
In other words, we may be able to write rprocess but not dprocess.
Simulation-based methods require the user to specify rprocess but not
dprocess.
Plug-and-play, likelihood-free and equation-free are alternative terms
for “simulation-based’ ’ methods.
Much development of simulation-based statistical methodology has
occurred in the past decade.
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The pomp package

The pomp package for POMP models

pomp is an Rpackage for data analysis using partially observed Markov
process (POMP) models (King et al., 2016).
Note the distinction: lower case pomp is a software package; upper
case POMP is a class of models.
pomp builds methodology for POMP models in terms of arbitrary
user-specified POMP models.
pomp provides tools, documentation, and examples to help users
specify POMP models.
pomp provides a platform for modification and sharing of models,
data-analysis workflows, and methodological development.
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The pomp package

Structure of the pomp package

It is useful to divide the pomp package functionality into different levels:

Basic model components
Workhorses
Elementary POMP algorithms
Inference algorithms
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The pomp package

Basic model components
Basic model components are user-specified procedures that perform the
elementary computations that specify a POMP model.
There are nine of these:

rinit: simulator for the initial-state distribution, i.e., the distribution
of the latent state at time 𝑡0.
rprocess and dprocess: simulator and density evaluation procedure,
respectively, for the process model.
rmeasure and dmeasure: simulator and density evaluation procedure,
respectively, for the measurement model.
rprior and dprior: simulator and density evaluation procedure,
respectively, for the prior distribution.
skeleton: evaluation of a deterministic skeleton.
partrans: parameter transformations.

The scientist must specify whichever of these basic model components are
required for the algorithms that the scientist uses.
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The pomp package

Workhorses

Workhorses are Rfunctions, built into the package, that cause the basic
model component procedures to be executed.

Each basic model component has a corresponding workhorse.
Effectively, the workhorse is a vectorized wrapper around the basic
model component.
For example, the rprocess() function uses code specified by the
rprocess model component, constructed via the rprocess argument
to pomp().
The rprocess model component specifies how a single trajectory
evolves at a single moment of time.
The rprocess() workhorse combines these computations for
arbitrary collections of times and arbitrary numbers of replications.
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The pomp package

Elementary POMP algorithms

These are algorithms that interrogate the model or the model/data
confrontation without attempting to estimate parameters.
There are currently four of these:

simulate performs simulations of the POMP model, i.e., it samples
from the joint distribution of latent states and observables.
pfilter runs a sequential Monte Carlo (particle filter) algorithm to
compute the likelihood and (optionally) estimate the prediction and
filtering distributions of the latent state process.
probe computes one or more uni- or multi-variate summary statistics
on both actual and simulated data.
spect estimates the power spectral density functions for the actual
and simulated data.
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The pomp package

POMP inference algorithms I

These are procedures that build on the elementary algorithms and are used
for estimation of parameters and other inferential tasks.
There are currently ten of these:

abc: approximate Bayesian computation
bsmc2: Liu-West algorithm for Bayesian SMC
pmcmc: a particle MCMC algorithm
mif2: iterated filtering (IF2)
enkf, eakf ensemble and ensemble adjusted Kalman filters
traj_objfun: trajectory matching
spect_objfun: power spectrum matching
probe_objfun: probe matching
nlf_objfun: nonlinear forecasting
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The pomp package

POMP inference algorithms II

Objective function methods: among the estimation algorithms just listed,
four are methods that construct stateful objective functions that can be
optimized using general-purpose numerical optimization algorithms such as
optim, subplex, or the optimizers in the nloptr package.
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The pypomp package

Structure of the pypomp package
Basic model components are user-specified procedures that perform the
elementary computations that specify a POMP model.
There are nine of these:

RInit: simulator for the initial-state distribution, i.e., the distribution
of the latent state at time 𝑡0.

RProc: simulator and density evaluation procedure, respectively, for
the process model.

RMeas and DMeas: simulator and density evaluation procedure,
respectively, for the measurement model.

LG(), dacca(), spx(), UKMeasles() : Four ready‑to‑run example
models returning a Pomp object.

The scientist must specify whichever of these basic model components are
required for the algorithms that the scientist uses.
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The pypomp package

key methods of the pyomp class

sample_params(bounds, n, key): Uniformly sample parameters
within given bounds.
simulate(key, theta=None, times=None, nsim=…): Simulate
latent states + observations.
pfilter(J, key, …): Particle filtering (optionally with multiple
repeats).
mif(sigmas, M, a, J, key, …): IF2 iterated filtering to maximise
likelihood.
train(J, itns, key, optimizer='Newton', …): Optimisation
based on auto‑diff gradients.
mop(J, key, alpha=0.97, …): Evaluate the Monte Carlo objective.
traces() / results(idx): Inspect parameter / log‑likelihood
histories.
plot_traces(): Visualise convergence and diagnostics.
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